Is There a Role for Offshore Wind Power in Renewable Hydrogen Production in Australia?

Cheng Cheng, Llewelyn Hughes

The Hydrogen Production System

- Off-grid system
- Offshore wind and onshore solar PV supply electricity
- Battery / pumped hydro as electrical storage
- Located near ports for export purpose
- Optimizes offshore wind, solar PV, storage and electrolyser capacity for least-cost hydrogen production

Varying-costs scenario

- Assumption-free analysis covering a wide range of future cost reduction scenarios
- Electrolyser cost reduction: 20%, 40%, 60%, 80%, 93% from 2020 level

AUD2/kg can be achieved with solar PV costing AUD35/MWh and offshore wind costing AUD43/MWh

Conclusions

- Reducing electrolyser costs is crucial to reduce the cost of green hydrogen sufficiently to enable it to compete on international markets.
- Offshore wind has a potentially useful role to play in supporting hydrogen production.
 - Potential land use or other above ground factors that limit solar PV (or onshore wind) deployment.
 - Offshore wind can smooth out variable generation from solar PV because they are usually negatively correlated.
- The role for offshore wind falls with lower electrolyser costs, because it is of increasingly less value to maintain high electrolyser capacity factor.

Annex: Modelling assumptions

GenCost Assumptions:

	Capital	Fixed O&M (AUD/kW	Variable O&M	Economic life
	(AUD/kW)	p.a.)	(AUD/MWh p.a.)	(years)
2020				
Large scale solar PV	1,505	17	-	25
Offshore wind	5,771	158	-	25
PEM electrolyser	3,510	105	-	25
2030				
Large scale solar PV	824	17	-	25
Offshore wind	2,336	64	-	25
PEM electrolyser	923	28	-	25
Real discount rate: 6%				

Electrolyser efficiency: 62kWh/kg in 2030

(linearly increasing from 70kWh/kg in 2020 to 45kWh/kg in 2050)

Annex: Site Selection

_

State	Port name	Offshore wind					Solar PV	
		Lat	Lon	Water depth (m)	Port distance (km)	Lat	Lon	
NSW	Port Kembla	-34.82	150.95	98	41	-34.47	150.89	
NT	Gove (near town of Nhulunbuy)	-12.05	136.69	24	16	-12.23	136.51	
QLD	Brisbane (Gibson Island)	-27.81	153.76	95	76	-27.43	153.14	
SA	Port Lincoln	-34.91	135.37	88	50	-34.72	135.83	
TAS	Hobart	-43.65	146.72	29	98	-42.88	147.30	
<mark>VIC</mark>	Port of Hastings	<mark>-39.05</mark>	<mark>144.77</mark>	<mark>70</mark>	<mark>85</mark>	-38.23	145.52	
WA	Oakajee	-27.81	114.01	46	106	-28.60	114.61	

Annex: Site Selection

Annex: 2030 PV-Constrained scenarios

- Offshore wind has an useful role to play in regions with good offshore wind resources (CF > 45%).
- Challenging for offshore wind in regions with poor to moderate offshore wind resources (CF < 40%).
- LCOH in the unconstrained systems ranges between AUD4.4–5.5/kg across sites

Annex: Varying-costs scenarios

Electrolyser - 80% cost reduction

The role for offshore wind falls with lower electrolyser costs

.

 In the 'worst-case' for offshore wind: it need to reach AUD50-80/MWh to achieve 40%-60% contribution, for a solar PV cost ranging between AUD30-60/MWh

 Both offshore wind and solar PV need to reach AUD20/MWh to achieve AUD2/kg

